
1

Antibody Drug Conjugates and 
Bispecific Antibodies

Maxine Handford

Oncology/Haematology Pharmacist 

Waikato Hospital

NZHPA CNO SIG Symposium 

6 September 2025



2Crescioli, S., et al.  mAbs, 2025; 17:1, 2443538

Trends in First Approvals of Antibody Therapeutics 
in any country 2010-2024



3Crescioli, S., et al.  mAbs 2025; 17:1, 2443538 

Trends in First-in-Human Studies of Antibody 
Therapeutics 2010-2024



4Fu, Z., et al.  Signal Transduction and Targeted Therapy, 2022; 7: 93

Antibody Drug Conjugate (ADC): the “biological 
missile” for targeted cancer therapy
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Mechanism of Action of ADCs
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 Target antigens should be:

 Expressed exclusively or predominantly in tumour cells (rare or 

low in normal tissues)

 Surface (or extracellular) antigen with high copy numbers    

(>105/cell) on the target tumour cell

 Non-secreted

 Internalised upon binding with the corresponding antibody

 Able to be processed by appropriate intracellular trafficking route 

→ successful release of payload

Examples

 CD19, CD22, CD33, CD30, BCMA,CD79b for haematological malignancies

 HER2, TROP2, nectin4 and EGFR for solid tumours

Selection of Target Antigen for ADCs
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Fu, Z., et al.  Signal Transduction and targeted Therapy, 2022; 7:93.  

Baah, S., et al.  Molecules, 2021; 26: 2943

Hoffman, R.M., et al.  Oncoimmunology, 2018; 7:3

 Target antigen specificity

 Binding affinity to target antigen 

 Ability to facilitate efficient internalisation into the target cell

 Size of antibody

 Immunogenicity

 Plasma half-life 

 IgG isotype and subclass

Important Considerations for Selection of 
Antibodies for ADCs
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Gemtuzumab 

ozogamicin

Brentuximab 

vedotin

Ado-trastuzumab 

emtansine (T-DM1)

Hydrazone Disulphide

Val-Cit

MCC

Baah, S., et al.  Molecules, 2021; 26:2943.  Fu, z., et al.  Signal Transduction and targeted Therapy, 2022; 7:93. 

Gemtuzumab 

ozogamicin

Hydrazone
Disulphide

Val-Cit
Brentuximab 

vedotin

MCC

Ado-trastuzumab 

emtansine (T-DM1)

 Cleavable linkers → selective 

cleavage at the tumour site       

(e.g. by enzymes or change in pH)

 Hydrazones

 Disulphides

 Peptide linkers (e.g. Val-Cit)

 Non-cleavable linkers depend on 

enzymatic hydrolysis of antibody 

→ release of payload linked to 

amino acid residue e.g. lysine 

 Maleimide derivatives          

(e.g. MC, MCC)

Linkers for ADCs
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 Cytotoxic payloads must have:

 High in vitro potency 

(IC50 in sub-nM range)

 Good stability in physiological  

conditions

 Functional groups for conjugating  

with the antibody

 Mechanism of action providing 

selective toxicity toward cancer cells

 Payload classes most commonly used:

 Auristatins (MMAE, MMAF)

 Maytansinoids (DM1, DM4)

 Calicheamicins

 Camptothecin analogues (SN-38, DXd)

 Pyrrolobenzodiazepine dimers (PBDs)

 Duocarmycins

Cytotoxic Payloads for ADCs
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Fu, Z., et al.  Signal Transduction and Targeted Therapy, 2022; 7: 93

 DAR = Av. No. of drug molecules per antibody; optimal DAR may be 2-4.

 Both DAR and homogeneity (consistency of sites of attachment) are dependent 

on method of conjugation of linker to antibody.

 Conjugation via pre-existing lysine (ε-amino) side chains of antibody → problems 

with heterogeneity and batch-to-batch variability.

 Conjugation via reduced cysteine sites and site-specific conjugation methods → 

more homogeneous products.

Drug-Antibody Ratio (DAR) and Homogeneity

Thiosuccinimide linker

Lysine sites

Reduced 

cysteine 

sites



FDA-Approved ADCs and Availability in NZ (August 2025)
ADC FDA-Approved Indications Approved for funding in NZ

Haematological malignancies

Gemtuzumab ozogamicin

(CD33)

CD33+ AML (2000, withdrawn 2011, 

reapproved 2017)

De novo CD33+ AML, good or 

intermediate risk, in combination with 

standard anthracycline and cytarabine 

chemotherapy (1 July 2022)

Brentuxumab vedotin

(CD30)

Relapsed/refractory HL or systemic ALCL 

(2011), mycosis fungoides (2017), newly 

diagnosed stage III/IV cHL, systemic ALCL 

and CD30-expressing PTCL in combination 

with chemotherapy (2018), cHL in combin-

ation with chemotherapy in children (2022) 

Relapsed/refractory CD30+ Hodgkin 

Lymphoma, relapsed/refractory ALCL

(1 December 2022) 

Inotuzumab ozogamicin

(CD19)

Relapsed/refractory B-cell ALL (2017) Relapsed/refractory CD22+ B-cell  

Acute Lymphoblastic Leukaemia / 

Lymphoma (1 April 2025)

Polatuzumab vedotin

(CD79b)

Relapsed/refractory DLBCL (2019) Not currently approved for funding*. 

Available via Roche CSP (July 2024) 

Belantamab mafoditin

(BCMA)

Relapsed/refractory multiple myeloma 

(2020, withdrawn November 2022)

_

Loncastuximab tesirine (CD19) Relapsed/refractory DLBCL (2021) _ 11



FDA-Approved ADCs and Availability in NZ (August 2025)
ADC FDA-Approved Indications Approved for funding in NZ

Solid tumour malignancies

Trastuzumab emtansine 

(HER-2)

HER2+ breast cancer (2013) Metastatic HER2+ breast cancer 

(1 Dec 2019); Early HER2+

breast cancer (1 July 2022)

Trastuzumab deruxtecan

(HER-2)

HER2+ breast cancer (2019), 

HER2+ gastric cancer (2021), 

HER2L0W breast cancer (2022) 

Metastatic HER2+ breast cancer 

(1 Jan 2025)

Enfortumab vedotin

(Nectin-4)

Urothelial carcinoma (2019), in combination 

with pembrolizumab (2023)

_

Sacituzumab govitecan

(TROP-2)

Triple-negative breast cancer (2020),

Urothelial carcinoma (2021), 

HR+, HER2- breast cancer (2023)

_

Tisotumab vedotin (TF-011) Cervical cancer (2021)  _

Mirvetuximab soravtansine

(FRα)

FRα+, platinum-resistant epithelial ovarian, 

fallopian tube and peritoneal cancers (2022)

_

Datopotamab deruxtecan (TROP-2) HR+, HER2- breast cancer (2023) _

Telisotuzumab vedotin (c-MET) Non small cell lung cancer (2025) _ 12
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Trends in ADC Development and Discontinuation Rates
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Donaghy, H.  mAbs, 2016; 8 (4); 659-671 

 Toxic effects often driven by payload

 Target and linker may determine organ specificity of toxicity

 Low level expression of target antigen on normal cells → 

specific tissue toxicities 

 Non-specific binding of antibody to Fc receptors or lectin 

receptors → toxicity toward cells expressing these receptors 

 Early cleavage of linker → more widespread toxicities

 Variations in DAR of ADC can have also have significant 
effects on toxicity

Mechanisms for Toxicity of ADCs



Expected Adverse Effects of ADCs
Toxicity ADC Payloads and Targets Associated 

with Toxicity

Examples

Off-Target Toxicities

Gastro-intestinal MMAE, calicheamicin, DXd, SN-38 Brentuximab vedotin

Gemtuzumab ozogamicin

Sacituzimab govitecan

Fam-Trastuzumab deruxtecan  (T-DXd)

Myeloid toxicity Calicheamicin, PBD dimers Gemtuzumab ozogamicin

Inotuzumab ozogamicin

Loncastuximab tesirine

Peripheral neuropathy MMAE conjugates with a protease-

cleavable linker (e.g. valine-citrulline)

Brentuxumab vedotin

Polatuzumab vedotin

On-Target Off-Tumour Toxicities

Cardiac toxicity HER2-specific ADCs Ado-Trastuzumab emtansine (T-DM1)

Fam-Trastuzumab deruxtecan (T-DXd)

Myeloid toxicity CD33+-specific ADCs Gemtuzumab ozogamicin

15Donaghy, H., mAbs, 2016; 8: 659-671.  Dumonet, C., et al.  Nat. Rev. Drug Discov., 2023; 22; 641-661



Serious Unexpected Adverse Effects of ADCs
Toxicity ADC Payloads and Targets 

Associated with Toxicity

Examples

Infusion reactions Gemtuzumab ozogamicin

Inotuzumab ozogamicin

Ocular toxicity DM4 and MMAF Belantomab mafoditin

Mirvetuximab soravtansine

Thrombocytopenia* Potent tubulin-inhibiting agents 

using non-cleavable linkers

Ado-trastuzumab emtansine (T-DM1)

Belanatmab mafoditin

Neutropenia* ADCs conjugated via protease-

cleavable linkers to MMAE or DXd

Brentuxumab vedotin

Polatuzumab vedotin

Fam-trastuzumab deruxtecan (T-DXd)

Hepatic Toxicity

including Sinusoidal Obstructive 

Syndrome (SOS) and ↑ LFTs*

Calicheamicin Gemtuzumab ozogamicin

Inotuzumab ozogamicin

Interstitial Lung Disease (ILD)*

(Pneumonitis)

HER2-specific ADCs

ADCs conjugated via protease-

cleavable linkers to DXd

Fam-trastuzumab deruxtecan (T-DXd)

Datopotamab deruxtecan

16

* Possibly due to phagocytosis or trogocytosis of ADC immune complexes (ICs) after non-specific binding to cells 

bearing Fcγ receptors → internalisation of ICs and release of cytotoxic payload → cell death. 

Taylor, R.P., Lindorfer, M.A.  Blood, 2024; 144 (2): 137-144
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Dosing Strategies to Mitigate Risks of Toxicity 

from ADCs

 Body wt-based vs fixed dosing

 Body wt-based dose-capping 

(↓ risk of overdosing in heavier pts)

 Treatment duration capping 

(↓ risk of chronic AEs that emerge 

during repeated dosing) 

 Fractionated dosing schedules 

(↓toxicity driven by Cmax) BW =  Individual wt

BWm = Typical body wt of normal wt pt

Liao, M.Z., et al.  Clin. Pharmacol. Ther., 2021; 110 (5): 1216-1230



18Herrera, M., et al.  Trends in Cancer, 2024; 10 (10): 893-919

Bispecific Antibodies (BsAbs)
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FDA-Approved BsAbs and Availability in NZ (August 2025)
BsAb Target Mechanism of 

Action

FDA-Approved Indications Approved for funding in NZ

Non-malignant conditions

Emicizumab Factor IXa x 

Factor X

Factor VIII 

mimetic

Haemophilia A (2017) Prophylactic treatment of patients with 

severe haemophilia A and high-titre

inhibitors of Factor VIII (Xpharm) 

(December 2020); extended to include 

all patients with severe haemophilia A  

and severe bleeding phenotype       

(endogenous Factor VIII activity ≤ 2%) 

(October 2023)

Faricimab VEGF x  

Ang-2

Dual ligand 

inhibitor

Wet age-related macular 

degeneration, diabetic 

macular oedema, macular 

oedema following retinal 

vein occlusion (2022)

Application for second-line treatment 

of patients with neovascular (wet) age-

related macular degeneration; and 

second-line treatment of patients with 

diabetic macular oedema (DMO)*

Ozoralizumab TNFa x HAS Half-life 

extended 

(HLE) Ligand 

inhibitor

Rheumatoid arthritis (2023) _

21
Surowka,M., Klein, C.  mAbs, 2024; 16:1.  Herrera, M., et al.  Trends in Cancer, 2024; 10 (10): 893-919



FDA-Approved BsAbs and Availability in NZ (August 2025)
BsAb Target Mechanism of Action FDA-Approved Indications Availability in NZ

Solid tumour malignancies

Catumaxomab EpCAM x 

CD3ε

T-cell engager Ovarian ascites (intraperitoneal)

(2009); withdrawn (2013)

_

Amivantamab EGFR x 

c-MET

Bispecific RTK  inhibitor 

(BsRTKi) + ADCC

NSCLC with EGFR exon 20 

insertion mutations (ex20ins) (2021)

_

Tebentafusp gp100-HLA* 

A02 x CD3ε

T-cell engager Uveal melanoma (2022) _

Cadonilimab PD-L1 x  

CTLA4
Dual checkpoint 

inhibitor

Cervical cancer after platinum-

based chemotherapy (2022)

_

Tarlatamab DLL3 x CD3ε T-cell engager ES-SCLC after platinum-based 

chemotherapy (2024)

_

Ivonescimab PD-1 x VEGF Dual checkpoint/Ligand 

inhibitor

NSCLC after progression following 

EGFR TKI (2024)

_

Zanidatamab HER2-ECD2 x 

HER2-ECD4

Dual signalling inhibitor 

+ ADCC + CDC 

Biliary tract cancer (2024) _

Zenocutuzumab HER2 x HER3 Dual signalling inhibitor 

+ ADCC

NSCLC and pancreatic 

adenocarcinoma with neuregulin 1 

(NRG1) gene fusions (2024)

_

22



FDA-Approved BsAbs and Availability in NZ (August 2025)
BsAb Target Mechanism 

of Action

FDA-Approved Indications Availability in NZ

Haematological malignancies

Blinatumomab CD19 x 

CD3ε

T-cell 

engager

R/R B-ALL (2014); MRD+ B-ALL  

(2017) Consolidation of Ph- ALL

NPPA Approvals for MRD+ B-

ALL (as bridge to Allo HSCT)*

Mosunetuzumab CD20 x 

CD3ε

T-cell 

engager

R/R Follicular Lymphoma after ≥2  

previous lines (2022)

Compassionate Use 

Programme (Roche)

Teclistamab BCMA x 

CD3ε

T-cell 

engager

R/R MM after 4 previous lines (2022) _

Glofitamab CD20 x 

CD3ε

T-cell 

engager

R/R DLBCL after ≥ 2 previous lines 

(2023)

Compassionate Use 

Programme 

(Roche, closed May 2025)*

Epcoritamab CD20 x 

CD3ε

T-cell 

engager

R/R DLBCL, high-grade B cell 

lymphoma, and Follicular Lymphoma 

after ≥ 2 previous lines (2023)

Pre-Approval Access Program

(AbbVie, closed 31 Dec 2024)*

Elranatamab BCMA x 

CD3ε

T-cell 

engager

R/R MM after 4 previous lines (2023) Participation in MagnetisMM-5 

clinical trial (closed)

Talquetamab GPRC5D x 

CD3ε

T-cell 

engager

R/R MM after 4 previous lines (2023) _

23
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Mechanism of Action of 

Blinatumomab (BiTE®)

Franquiz, M.J., Short, N.J.  Biologics: Targets and Therapy, 2020; 14: 23-34
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Mechanism of Action of BsAb T-cell Engagers 

 Tumour-Associated 

Antigen (TAA) Targets for 

haematological cancers:

 CD19; B-ALL

 CD20; B-cell Non-

Hodgkin Lymphoma 

 BCMA, GPRC5D;  

Multiple Myeloma 

Herrera, M., et al.  Trends in Cancer, 2024; 10 (10): 893-919

Van de Donk, N.W.C.J., Zweegman, S.  Lancet, 2023; 402: 149-158.
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Adverse Effects of BsAb T-Cell Engagers

 Risk of severe CRS 

reduced by:

 Stepwise ↑ in dose 

(step up dosing)

 Premedication with: 

antihistamine + 

paracetamol + 

dexamethasone
 Subcut vs i.v. dosing

 Cytokine Release Syndrome (CRS)

Shimabukuro-Vornhagen, A., et al.  J. 

Immunother. Cancer, 6: 56

Leclercq-Cohen, G., et al.  Clin. Cancer 

Res., 2023; 29 (21): 4449-4463
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Grading and Management of CRS

Lee, D.W., et al.  Biol. Blood Marrow Transplant, 2019; 25: 625-38  

Yakoub-Agha, I., et al. Haematologica, 2020; 105: 297-316

 CRS Grades ≥2:

 Consider using Tocilizumab 8mg/kg (max dose 800mg) 

 A second dose may be given after 8 hours if no response to first dose.  

 Consider addition of dexamethasone IV 10-20mg IV Q6H for 1-3 days

 CRS Grade 4: 

 Repeat dose of Tocilizumab 8mg/kg (max 2 additional doses)

 Administer methylprednisolone IV 1000mg/day for 3 days, then taper.

CRS Parameter Grade 1 Grade 2 Grade 3 Grade 4

Fever Temperature ≥ 38⁰C Temperature ≥ 38⁰C Temperature ≥ 38⁰C Temperature ≥ 38⁰C

With

Hypotension

(SBP <90mmHg)

None Not requiring 

vasopressors

Requiring vasopressor ±

vasopressin

Requiring multiple 

vasopressors 

(excluding vasopressin)

And/or

Hypoxia None Requiring O2 via nasal 

prongs (≤ 6L/min)

Requiring high-flow O2 via 

nasal prongs (>6L/min), 

facemask, non-rebreather of 

venture mask

Requiring positive pressure 

O2 e.g. CPAP, BiPAP, 

intubation and mechanical 

ventilation
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 Hyperactivation of immune effector cells → release of cytokines and 

chemokines → endothelial cell activation, disruption of blood-brain 

barrier and neuronal cell injury by neurotoxin

 Early symptoms include tremors, mild aphasia, apraxia, dysgraphia.

 Dysphasia may be a specific, early marker of severe neurotoxicity

 Symptoms may progress to delirium, seizures or coma

 Incidence variable, but generally <5% with BsAbs

 Higher incidence with blinatumomab (all grades, 47-53%; grade ≥3, 

7-13% )

 Requires close monitoring for early signs of neurotoxicity

Immune Effector Cell-Associated Neurotoxicity 

(ICANS)
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Immune Effector Cell Associated Encephalopathy 

(ICE) Assessment Tool
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Use of ICE Score for Assessment of Neurologic 

Toxicity and Grading of ICANS 
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Increased Risk of Infections
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Mechanisms for Resistance to 

Bispecific Antibodies

 Tumour-related features

‒ Loss of target antigen expression

‒ Presence of high-risk cytogenetic abnormalities

 T-cell dysfunction

‒ Impaired T-cell fitness (T cell frequency) with cumulative 

exposure to   immunosuppressive anticancer drugs 

‒ T-cell exhaustion (Upregulation of immune checkpoint proteins)

 Tumour microenvironment

‒ Immune suppressor cells (e.g. Tregs) 

‒ Bone marrow stromal cells

 Anti-drug antibodies (ADAs) 

Herrera, M., et al.  Trends in Cancer, 2024; 10 (10); 893-919  

Van de Donk, N.W.C.J., Zweegman, S.  Lancet, 2023; 402: 142-158 
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Conclusions

 Antibody-drug conjugates  and bispecific antibodies have emerged as 

important new classes of therapeutic agents for treatment of cancer.

 They possess novel mechanisms of action and have demonstrated 

good clinical efficacy, when used for treatment of advanced disease.

 There are some significant adverse effects, but these are usually able 

to be managed with appropriate dosing schedules and supportive 

medications.

 These medications are expected to play an increasingly important role 

in management of both haematological malignancies and solid 

tumours when used in earlier stages of disease and in combination 

with other agents to overcome problems with resistance.
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