Radiotherapy and Chemoradiotherapy

Dr Angus Ades

Contents

- History
- Scientific basis of radiotherapy
- Types of radiotherapy
- Clinical uses of radiotherapy
- Chemoradiotherapy
- Process of radiotherapy

History: Discovery and Quackery

- 1895 Discovery of X-rays by Wilhelm Roentgen (Won Nobel prize in Physics 1901)
- 1896 Becquerel and Marie/Pierre Curie describe radioactive decay/natural sources of radiation.
- 1896 Use of X-rays for treatment of breast cancer (Emil Grubbe).
- 1901 -> 1930 use of radium and X-rays to treat a variety of malignancies and cutaneous disease. Radioactive substances incorporated into a variety of commercial products.

Mand Rope 12 64

History: Early Treatments

 1941 – Use of radioactive iodine to treat thyroid ca/hyperthyroidism.

1951 – Development of Cobolt-60 teletherapy.

 1956 – First linear accelerator used for radiotherapy treatment.

1968 – Development of Gamma Knife radiosurgery

History: Imaging Improvements

• 1971 – Development of CT

• 1977 – First use of MRI

History: Increasing Sophistication

• 1980's – Development of multi-leaf collimators and Intensity Modulated Radiation Treatment.

 2000's – Image guided radiotherapy and widespread adoption of Intensity Modulated Radiation Treatment.

Physical basis of radiotherapy

- Photons
 - X-rays
 - Generated by a linear accelerator when accelerated electrons hit a tungsten target
 - Gamma Rays
 - Emitted from a nucleus of a radioactive atom.
 - Cobalt treatment machine
 - Radioisotopes used in brachytherapy
- Particles
 - Electrons
 - Protons
 - Neutrons

Biological basis of radiotherapy

- Radiation therapy works by directly or indirectly damaging the DNA of cells.
- Double stranded breaks and single strand breaks prevent mitosis and require repair.
- If repair is not possible then apoptotic or necrotic cell death occurs.

Biological basis of radiotherapy

- Cancer cells have a generally impaired ability to repair DNA damage which leads to cell death or inability to replicate.
- A therapeutic benefit is derived from preferentially damaging tumour cells.
- All tissues have a tolerance level, or maximum dose, beyond which irreparable damage may occur

Biological basis of radiotherapy

- Fractionation, or dividing the total dose into small daily fractions over several weeks, takes advantage of differential repair abilities of normal and malignant tissues
- Fractionation spares normal tissue through repair and repopulation while increasing damage to tumour cells through redistribution and reoxygenation
 The 4 'R's' of radiobiology

- Spatial Cooperation
 - Radiotherapy = local treatment.
 - Chemotherapy = global treatment.
 - Radiotherapy can sterilise gross primary and nodal disease.
 - Chemotherapy can address microscopic metastatic disease.
 - Ideally radiotherapy and chemotherapy will have independent/non overlapping side effects/toxicity.

- In field cooperation
 - 'Additive' or 'supra-additive' effect.
- Radiation Sensitisation
 - Direct radiation damage enhancement by drug incorporation into DNA/direct damage to DNA
 - 2. Cellular repair inhibition
 - 3. Radiosensitive phase cell accumulation or radioresistant phase cell elimination
 - 4. Hypoxic cell elimination
 - 5. Inhibition of accelerated cancer cell repopulation

Direct radiation damage enhancement by drug incorporation into DNA

- Halogenated pyrimidines [5bromodeoxyuridine (BUdR) and 5iododeoxyuridine (IUdR)]
- Similar to DNA precursor thymidine (halogen substituted for methyl group)
- Weakens the DNA chain susceptible to RT induced DNA damage

Direct damage to DNA

- Cisplatin
- 5FU
- Damage by these agent + SS DNA breaks from RT = double strand break -> unrepairable.

Cellular repair inhibition

- 5-FU, Gemcitabine, fludarabine, methotrexate, etoposide, hydroxyurea
- If DNA unable to be repaired then causes cell death or subsequent RT can cause cell death.
- More effective in fractionated radiotherapy.

Radiosensitive phase cell accumulation or radioresistant phase cell elimination

- Taxanes, gemcitabine, fludarabine, etoposide, methotrexate, hydroxyurea
- Sensitive periods in cell cycle for RT induced DNA damage.
- If tumour cells could be synchronised then improved cell kill.
- Good pre-clinical data but unclear if this is replicated in vivo.

Hypoxic cell elimination

- Indirect DNA damage via oxygen free radicals.
 - Hypoxic cells = radioresistant.
- Chemotherapy -> reduction in tumour bulk therefore improved oxygenation.
- Drugs targeting hypoxic cells (tirapazemine) -> kills tumour cells RT can't.
- Drugs mimicking oxygen (misonidazole).

Inhibition of accelerated cancer cell repopulation

- Tumours excess cell proliferation compared to cell loss.
- Limited by nutirents, oxygen etc.
- Killing a fraction of tumour cells allows remaining cells to rapidly divide -> accelerated repopulation.
- Cytostatic or cytotoxic chemo reduces this therefore improves tumour control.

Types of Radiotherapy

- External Beam Radiotherapy
- Photons
 - X-rays from a linear accelerator
 - Most common form of radiotherapy
 - Conventional vs stereotactic treatment.
- Electrons
 - Linear accelerator
- Heavy Charged Particles
 - Protons
 - Carbon ions
- Non External Beam Radiotherapy
 - Brachytherapy
 - Theranostics

- Definitive
 - Alone
 - E.g. Prostate, Lung, Head/Neck, CNS, lymphoma, skin.
 - Chemoradiotherapy
 - Lung, Gynae, Head/Neck, CNS

- Adjuvant
- E.g. Skin, Breast, Head/Neck, Gynae, CNS.

- Neoadjuvant
- E.g. Sarcoma, Rectal.

- Palliative
- For symptom management: pain, swelling, bleeding.

- Palliative
- For symptom management: pain, swelling, bleeding.

The process of radiotherapy

The process of radiotherapy: Initial . Consultation

- Examination
- Review of:
 - **Imaging**
 - Operative reports
 - Histology/pathology
- Assess suitability for radiotherapy
- Informed consent
- Book for radiation treatment
- Referrals to other medical specialities allied health/nursing staff

The process of radiotherapy: Simulation

- Patient is set up in treatment position on a dedicated CT scanner
 - Immobilization devices may be created to assure patient comfort and daily reproducibility
 - Reference marks or "tattoos" may be placed on patient
- CT simulation images are often fused with PET or MRI scans for treatment planning

The process of radiotherapy Contouring

- Gross disease is defined (Gross Tumour volume GTV)
- Margin around GTV to encompass microscopic disease spread (Clinical Target Volume – CTV)
- Isotropic margin added to CTV to allow for uncertainty in set up or treatment delivery (Planning Target Volume – PTV)
- Define healthy organs Organs at Risk (OARs)

The process of radiotherapy: Planning

- Sophisticated software is used to carefully derive an appropriate treatment plan
 - Computerized algorithms enable the treatment plan to spare as much healthy tissue as possible while ensuring adequate dose to the PTV
- Medical physicist checks the chart and dose calculations
- Radiation oncologist reviews and approves final plan
 - Is the target being covered adequately?
 - Is the amount of radiation given to normal tissues acceptable?
 - Potential side effects of each particular treatment – short and long term

The process of radiotherapy: Quality Assurance

- Each radiation therapy treatment plan goes through many safety checks
- The medical physicist checks the calibration of the linear accelerator on a regular basis to assure the correct dose is being delivered
- The radiation oncologist and medical physicist go through a rigorous multi-step QA process to be sure the plan can be safely delivered
- QA checks are done by the radiation therapist daily to ensure that each patient is receiving the treatment that was prescribed for them

The process of radiotherapy: Set Up/Delivery

- Patients are positioned in the same way as at planning.
- Detailed instructions are followed regarding each individual patients set ups.
- Objective markers such as tattoos are used to ensure position is correct.
- X-rays or cone beam CT is used to match tumour, bony anatomy or implanted fiducials to ensure treatment is accurate.

The process of radiotherapy: Follow up

- On treatment review weekly.
- Post treatment: frequency varies with treatment aim and site.
- History, examination, imaging to ensure no evidence of recurrence, symptoms or late effects.
- Typically follow up ends at 5 years.

Questions

