

Incidence of Paediatric Diseases in NZ

	Incidence per 10,000 per year		
Asthma	1450		
Pertussis (<1 year)	466		
Pertussis (1-4 years)	254		
Autistic Spectrum Disorder	170		
All Cancer	149		
Invasive pneumococcal disease (all ages)	107		
Leukaemia	51		
Rheumatic Fever	46		
Non-CF Bronchiectasis	37		
Lymphoma	13		

Paediatric and AYA ALL in NZ

- 37 patients per year (0-14 years)
 - 24% of childhood cancer presentations (2019)
- 10 patients per year (15-19 years)
- 8 patients per year (19-24 years)

Figure 1. Proportional distribution of childhood cancer in Aotearoa, New Zealand 2015 – 2019 by diagnostic group and age at diagnosis

Distribution of Paediatric Cancer Care in NZ

- 2 Paediatric Haematology and Oncology Centres
 - Starship Blood and Cancer Auckland (SBCC)
 - Christchurch Haematology and Oncology Centre (CHOC)
- Shared Care Model
 - 70 to 75% of patients in SBCC catchment
 - 25 to 30% of patients in CHOC catchment
 - Hub and spoke model of care
 - Total of 14 shared care centres around NZ

ALL Overall Survival

Figure 1. Overall Survival among Children with Acute Lymphoblastic Leukemia (ALL) Who Were Enrolled in Children's Cancer Group and Children's Oncology Group Clinical Trials, 1968–2009.

Development of ALL Treatment

Key Clinical Prognostic Factors

Age	• > 1, < 10 years – favorable		
	• ≤ 1 and ≥ 10 years — unfavorable		
White Blood Cell Count	• <50,000/μL – favorable		
	• ≥50,000/μL – unfavorable		
	B-precursor – favorable		
Immunophenotype	T-cell – requires more intensive therapy		
Camalan	Female – favorable		
Gender	Male – historically required longer treatment		
Extramedullary Disease	Absent – favorable		
	Present – unfavorable		

T-ALL

- 12-15% of all newly diagnosed paediatric ALL
- T-ALL patients have higher rates of CNS disease
- Most important prognostic marker: Disease response to treatment
 - Slower pattern of disease regression compared with B-ALL
 - Patients with EOI MRD positivity but EOC MRD negative have favourable outcomes
- Other factors such as age and presenting WBC are not independently prognostic
- Cytogenetics are not prognostic (currently)

Cytogenetics

- Assists in diagnosis
- Monitoring of residual disease
- Early detection of relapse
- Guide precision medicine

Current Schema for Treatment

AALL0932 – Std Risk

Maintenance

- Vincristine/Dexamethasone q4weeks vs q12 weeks
 - DFS & OS
- Oral methotrexate 20mg/m² vs 40mg/m²
 - DFS & OS
- Outcomes
 - 5-year EFS 92%
 - 5-year OS 98.5%
 - Changes to q12 weekly dosing of vinc/dex
 - Mtx dosing remains at 20mg/m²

AALL0232 – High Risk

- Dexamethasone vs Prednisone in Induction
 - Dexamethasone 10mg/m²/day for 14 days vs 60 mg/m²/day of prednisone for 28 days
 - Dexamethasone higher risk of febrile neutropenia (NS)
 - Dexamethasone higher risk of osteonecrosis in > 10 years of age (S)
 - SOC prednisone ≥ 10 years, dexamethasone < 10 years

- High Dose Methotrexate vs. Capizzi Methotrexate
 - HDMtx > Capizzi
 - 5-year EFS (80% v 75%; P = .008) and OS (88.9 ± 1.2% v 86.1 ± 1.4%; P = .025) rates

AALL1131 – High Risk

- Triple intrathecals vs. Single intrathecal
 - Assess if Triple IT's would further decrease CNS relapse rates without increasing neurological toxicities

5yr DFS was not improved with triple intrathecals

AALL1331 - Relapsed/Refractory

- Approx. 10-15% relapse.
 - 5-year OS ~35-50%
- Blinatumomab
 - Established that blinatumomab in addition to chemotherapy was superior to

ALL1731 – Standard Risk

Blinatumomab brought into the upfront setting

Randomization

AALL1731 – Standard Risk

- Interim data analysis early termination of randomisation
- Blinatumomab significantly improved DFS

Overall cohort

3-yr DFS 87.9 vs 96% Hazard ratio (HR) 0.39

SR-Avg

3-yr DFS 90.2 vs 97.5% **HR 0.33**

SR-High

3-yr DFS 84.8 vs 94.1% **HR 0.45**

AALL1731 – Standard Risk

Blinatumomab also reduced relapse

AALL1731 – Standard Risk

Low incidence of blinatumomab specific toxicities

	Blina Cycle 1 (N=624)		Blina Cycle 2 (N=552)	
	Grade 2+	Grade 3+	Grade 2+	Grade 3+
Cytokine release syndrome	18 (2.9%)	2 (0.3%)	9 (1.6%)	0 (0.0%)

- Anecdotal experience
 - Most frequent adverse effect seen is seizures
 - Expected incidence is 4%

Blinatumomab

- Dosing
 - 15mcg/m²/day for 28 days (cap at 28mcg/day)
 - Day 1 dexamethasone 5mg/m² single dose
- Administration
 - Requires 24-72 hour initial admission for monitoring
 - Alternating use of 72 hour and 96 hour infusion bags
 - CADD pumps
 - Overage in infusion bag (30mL)
- Future studies looking at subcutaneous blinatumomab

Blinatumomab Access in NZ

- Considered Standard of Care for Standard and High Risk ALL
 - Up to the age of 25 years
- Funding/Access challenges for the AYA cohort

What Next.....

- What does the next clinical trial look like
- Can we de-intensify chemotherapy?
 - Reduce steroid exposure
 - Remove asparaginase
 - Remove specific phases of treatment
 - Long term effects
- What does relapsed/refractory therapy look like with upfront blinatumomab therapy?
 - Do you use blinatumomab again?
- Greater risk of CNS related relapse?
 - What does next steps look like for these patients

What Next.....

 What does CAR-T Therapy look like with blinatumomab in the upfront setting?

Acknowledgements

- Dr Peter Bradbeer Paediatric Haematologist
- Dr Huan Ng Paediatric Haematologist and Stem Cell Transplant

References

- https://childcancernetwork.org.nz/wp-content/uploads/2022/08/Final-July-2022-Childhood-Cancer-Incidence-2015-2019.pdf
- Stephen P. Hunger, M.D., and Charles G. Mullighan, M.D. Acute Lymphoblastic Leukemia in Children. N Engl J Med 2015;373:1541-1552
- Hayashi, H.; Makimoto, A.; Yuza, Y. Treatment of Pediatric Acute Lymphoblastic Leukemia: A Historical Perspective. Cancers 2024, 16, 723. https://doi.org/10.3390/cancers16040723
- lacobucci I, Mullighan CG. Genetic Basis of Acute Lymphoblastic Leukemia. J Clin Oncol. 2017 Mar 20;35(9):975-983. doi: 10.1200/JCO.2016.70.7836. Epub 2017 Feb 13. PMID: 28297628; PMCID: PMC5455679.
- Angiolillo AL, Schore RJ, Kairalla JA, Devidas M, Rabin KR, Zweidler-McKay P. et al. Excellent Outcomes With Reduced Frequency of Vincristine and Dexamethasone Pulses in Standard-Risk B-Lymphoblastic Leukemia: Results From Children's Oncology Group AALL0932. J Clin Oncol. 2021 May 1;39(13):1437-1447. doi: 10.1200/JCO.20.00494. Epub 2021 Jan 7. PMID: 33411585; PMCID: PMC8274746.
- Larsen EC, Devidas M, Chen S, Salzer WL, Raetz EA, Loh ML. et al. Dexamethasone and High-Dose Methotrexate Improve Outcome for Children and Young Adults With High-Risk B-Acute Lymphoblastic Leukemia: A Report From Children's Oncology Group Study AALL0232. J Clin Oncol. 2016 Jul 10;34(20):2380-8. doi: 10.1200/JCO.2015.62.4544. Epub 2016 Apr 25. PMID: 27114587; PMCID: PMC4981974.
- Salzer WL, Burke MJ, Devidas M, Dai Y, Hardy KK, Kairalla JA. et al. Impact of Intrathecal Triple Therapy Versus Intrathecal Methotrexate on Disease-Free Survival for High-Risk B-Lymphoblastic Leukemia: Children's Oncology Group Study AALL1131. J Clin Oncol. 2020 Aug 10;38(23):2628-2638. doi: 10.1200/JCO.19.02892. Epub 2020 Jun 4. PMID: 32496902; PMCID: PMC7402996.
- Hogan LE, Brown PA, Ji L, Xu X, Devidas M, Bhatla T. et. al. Children's Oncology Group AALL1331: Phase III Trial of Blinatumomab in Children, Adolescents, and Young Adults With Low-Risk B-Cell ALL in First Relapse. J Clin Oncol. 2023 Sep 1;41(25):4118-4129. doi: 10.1200/JCO.22.02200. Epub 2023 May 31. PMID: 37257143; PMCID: PMC10852366.
- Chu Y, Zhou B, Gao R, Miao M, Qiu H, Tang X, Wang Y, Chen S, Kang L, Wu D, Xu Y. Efficacy and safety of CAR-T cell therapy in B-ALL patients previously treated with blinatumomab. Blood Cancer J. 2025 Feb 5;15(1):11. doi: 10.1038/s41408-025-01217-9. PMID: 39910042; PMCID: PMC11799302.